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ABSTRACT\
-This paper contains a variational treatment of the Ambrosetti-Prodi

problem, including the superlinear case. The main result extends previous

ones by azdan-Warner, Amann-Hess, Dancer, K. C. Chang and de Figueiredo. The

required abstract results on critical point theory of functionals in Hilbert

space are all proved using Ikeland's variational principle. These results

apply as well to other superlinear elliptic problems provided an ordered pair

of a sub- and a supersolution is exhibited. /
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SIGNIFICANCE AND EXPLANATION

Semilinear elliptic boundary value problems of the type

(t) -Au = g(u) + f(x) in 9, u - 0 on 39

where 1 is some bounded domain in RN and g : R * R and f a + R are

some given functions, have no solution in general if

(**) lum sup <(u )  < lim inf g(u)
U 'U+ - 00 U++

I
where A is the first eigenvalue of -A in H However in 1972,

10
Ambrosetti and Prodi observed a very interesting phenomenon concerning this

class of problems. Namely, they showed that there is a manifold M in

C 0'a() which disconnects C0U (R) into two open sets 00 and 02 such

that if f e o0, problem (*) has no solution, if f e M problem (*) has

exactly one solution, if f e 02 problem (*) has exactly two solutions.

Their result was obtained under very stringent conditions on g. Namely,

convexity, asymptotically linear growth at ±, and the second limit in (**
1

being less than the second eigenvalue of -A in H 0 . In subsequent years

there has been an increasing effort to understand the actual role of these

assumptions in this phenomenon. The present paper is a contribution in this

direction. It is seen that as far as existence (or nonexistence) is concerned

these assumptions are not essential. What matters is the crossing of the

first eigenvalue A as stated in (**). The previous results in this subject

by Amann and Hess and by Dancer use topological degree to obtain the second

solution. For that purpose de Figueiredo used a variational argument

obtaining a more general v'esult. The first solution is always obtained in the

preceding works by the method of monotone iteration, as does Kazdan and

Warner. In the present paper we obtain much more complete results proceeding

solely by variational methods.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

mm , I
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A VARIATIONAL APPROACH TO SUPERLINEAR ELLIPTIC PROBLEMS

Djairo G. do Figueiredo* and Sergio Solimini**

INTRODUCTION.

The main objective of the present paper is to give a variational treatment of the

superlinear Ambrosetti-Prodi problem and to prove the existence of two solutions for

certain values of the parameter. In this process we produce interesting and simple proofs

of some abstract results using Ekeland's variational principle (1]. Some of these abstract

results, namely Propositions 3 and 5, are known in the literature, where they are proved

via the deformation lema, c.f. Hofer (2] and Rabinowitz (3]. Our results on the

superlinear Ambrosetti-Prodi problem extend previous theorems of Dancer [4], K. C. Chang

[5] and one of the authors [6].

Let Q be a smooth bounded domain in RN, N A 2. Let g : x R - R be a function

satisfying the following conditions:

(gl) g is a C 1-function,

(g2) lim supg(x,s) < A < lim inf g(x's)
s 1 5

(g3) lii g(xs) . 0, where 1 < a 4 (N+2)/(N-2) if N > 3
G

or 1 < 0 < if N 2

(94) lm inf s(xs) - 9G(Xrs) > 0, if N ) 3 and (N+)/(N-1) < 0 C (N+2)/(N-2)a 2 glx,$)2/(N+1)

where 6 > 2 and G(xs) - f g(x,)dC
0

*Universidade de Brasilia and Guggenheim Fellow (1983)
**Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.



The statements about the limits above are supposed to hold uniformly for x e A. The

limits in (92) could assume value -q or +-, respectively, on the whole of 11 or on

subsets of positive measure. In (92), A denotes the first eigenvalue of the eigenvalue

problem -Au - Au in 0, u - 0 on 3M. We denote by * the sigenfunction corresponding

to A and such that * > 0 in n and # 2 = 1. Let * . {u e c2(5) t f u# - 0). Any

function f e ca (5) can be uniquely decomposed as f - t# + h, where t e R and

I
h e w. we shall look at the parametrized family of Dirichlet problems:

(P t -Au - g(x,u) + t¢ + h in Q, u - 0 on 3fl,

and prove the following result.

iTheorem 1. Assume (g1), (92), (g3) and (94). Then given h e * there exists a t e R
2,a

(depending on h), such that problem (Pt) has at least two C -solutions if t < t, and

no solution if t > t. Moreover, there is at leasnt one solution for t - t provided we

assume the following additional condition on g, in the case that N ) 3 and the 0 in

(g3) is > (N+1)/(N-1):

(95) there is a function a : Q + R, with a(x) > 0 if x e 0, such that

lim CI(x, ) . a(x)

for some (N+I)/(N-1) < a < (N+2)/(N-2).

Remarks. 1) Condition (g2) characterizes (Pt) as a boundary value problem of the

Ambrosetti Prodi type. 2) Condition (93), together with a convenient modification of the

nonlinearity g(x,s) for a < 0, allows us to treat (Pt) by variational techniques. In

this way we obtain its solutions as critical points of an associated Euler-Lagrange

functional. 3) Condition (94), in conjunction with (92) and (93) are used to prove that

such a functional satisfies the Palais-Smale condition. 4) Condition (g5 ) implies an a

priori bound on the solutions of (Pt) for h fixed and t in a compact set. Observe that

in the cases N - 2 and N ) 3 with I < 0 4 (N+I)/(N-1) an a priori bound on solutions

follows from the other hypotheses of the theorem. We remark that (g5) is a strong

restriction; once it is assumed, then (g3) and (94) are automatically fulfilled for the

-2-



corresponding ranges of N and 0. The a priori bounds mentioned above are consequences

of similar results for positive solutions of certain second order elliptic equations.

Indeed, just observe that (Pt has a minimal solution ut and that any other solution u

may be written as u - ut + v, where v is a positive solution of an appropriate second

order elliptic equation. The bound on the v's follows from the work of Gidas-Spruck (7]

in the case when (gS) is assumed. In the other cases the estimates of Br6zis-Turner 18]

will suffice.

The naper is organized as follows. In the first part we recall known results and

prepare our differential problem (Pt) to be treated by variational methods. In the second

part we state and prove some abstract results, which will be used in the next section.

Finally in the third part, we show how the abstract theorems of the previous section are

used to prove results on the existence of two solutions for some second order elliptic

problems. There the basic assumption is that these problems have a strict subsolution w

and a strict supersolution W, with w ( W. In particular these results imply Theorem

1. The solutions so obtained are in H 0 . However in view of the regularity assumptions

on g and 9 made above, their regularity follows either by standard bootstrap arguments

or more sophisticate ones due to Brfzis-Kato [9], see also [6].

The contents of this paper were presented by the first author at the AMS Summer

Institute on Nonlinear Functional Analysis and Applications in Berkeley (July 1983).

-3-



1 . VARIATIONAL FOR4ULATION.

We start with the following result which is essentially due to Kazdan-Warner (10].

Lema 2. Assume (gl) and (g2), and let h e #*I be given. Then (i) there exists a t I e R

such that (Pt) has no solution if t > t1 . (ti) For each given t e R there exists a

C
2
,aefunction Wt, which is a strict subsolution of (Pt) and bounds from below all

eventual supeesolutions of (PtI. (iii) There exists a t2 e R such that (P ) has a

strict supersolution W e C2(s).
t2

From now on we assume h e * be given and fixed. The set J of the t's such

that (Pt) has a supersolution is a halfline from -. Let i be the supremum of J. We

assert that if t ( t then (Pt) has a strict supersolution. Indeed, a supersolution of

problem (P), with t < Z < t, is a strict supersolution of problem (Pt).
t

Rereafter let t < t be fixed. Our goal is to prove that (Pt) has two solutions.

We remark at this point that the method of monotone iteration yields readily the existence

of one solution. This was the approach taken by Kazdan-Warner [10], and also used by

Amann-Hess [111, Dancer [4], Berestycki [12] and one of the authors [6] to obtain the first

solution (the minimal one) of the Ambrosetti-Prodi problem. The second solution was

obtained by degree arguments, in the case of 14], (11] and [12], and by a variational

argument, in the case of (6]. In the present paper we proceed solely by variational

techniques, even for the first solution. In this way we are in the spirit of the work of

Nofer [2].

In order to formulate variationally our problem, we recall [see Lemma 2] that all

eventual solutions of (Pt) are bounded from below by w t We remark that W is the
t t

solution of the Dirichlet problem

-Awt 
=  t - C + t+ + h in 9, wt = 0 on 39

where U < A1 and C > 0 are chosen in such a way that g(x,s) > us - C for all x e n

and S e R. [Such a lower bound on g exists as a consequence of (g2), cf. [6]]. So w
t

depends only on this lower bound for g(x,s) end consequently a modification of g

maintaining it produces the same w " Thus we modify the nonlinearity g(x,s) for

s < min W t  so as to preserve the inequality g(x,s) us -C. The solutions of (Pt)

-4-



with this modified nonlinearity are the Meae as the ones of the original problem. in

addition, we do this modification in such a way that the new g is still a C Ifnto and

moreover g(x,s) )O 0 for large negative s and g has linear growth as a + -. With

this new nonlinearity the functional f below is well defined in HIi and satisfies the

Palais-Smale condition, cf. (6]:

*(u) -f _I IVUI2 -G~x,u) -(t# + h)u

-2



2.* ABSTRACT RESULTS.

Let H be a real Hilbert apace, with inner product <-,-> and norms 1-1. A

functional 0* H + R of class C Iin said to satisfy the Palais male condition if every

sequence (u.) in H, such that flu n) is bounded and V(u n) + 0, is precompact. Thie

following result was a proposition proved by Hof er in [2] using the deformation leama

adapted for closed convex subsets of a [filbert space. We provide below a different proof.

Proposition 3. Let 9 e cI (H,R) satisfy the Palais Smale condition. Let C be a closed

convex subset of H. Suppose that K B I 'mps C into C and that 9 is bounded

below in C. Then there is u. e c such that *'(u.) - 0 and mtf ON *u).
C

Proof. By Ekeland's variational principle, given C > 0 there is u 8 C such that

flu C) 4 mtf * + E and
C

(1ON(u) 4 ONu) + £Uu - MIe, V u e c

Take in (1) u 0 ( - t)u C+ t~u,, with 0 4 t 4 1, and use Taylor's formula to expand

ONu + t(Xu -u )) about U, * We then obtain

tI9'(u C)1 4 Et19'(u C)I + O(t)

from which follows that 19(u C)1 4 E, making t + 0. Finally use the Palais-Smale

condition to conclude that there exists u 0 e C such that uc + u0 0 for some sequence

£*0. The continuity of 9 and 0' completes the proof. 0

An operator T H + H is said to be of jypu S +it for every sequence un -A- u

means weak convergence) such that lim sup(Tun 'un - u) IC 0, it follows that un + u.

Proposition 4. Let f e C (H,R) he such that *1 is of type S * Suppose that 9 is

bounded below in a ball B. Then there exists v0 8 e such that ONv) - inf t and
B

V(v I = * with A~ 4 0.

Proof. By Ekeland's variational principle, given C > 0 there exists v 8 B such that

f(v 4 in mE + E and

(2) O(v E 4 9(v) + Elv - v CIt v v e

How let u LO B be arbitrary and take in (2) v - v E+ t~u - v I, with 0 4 t 4 1. Use

Taylor's formula to expand f(v, + t(u -v )) about v. and obtain, making t * 0:

(3) 0£ -C 0(v C),u v e + clu -v E, V u e

-6-



Next taking in (3) u - vo, where v.is the weak limit of v efor some sequence

E * 0, and making C + 0, one obtains lrn sup <C(v C),v E- v 0> 4 0. Since 0' in of
£ £

type S+, it follows that v. + V 0 . We obtain readily that NYv - inf 0. on the other

hand, from (3) it follows that 0 4 <0'(v 0),u - vo> for all ui e i. This imples that

there exists Ah 4 such that #I(v O) - )1vO 0

The Mountain Pass Theorem of Ambrosetti-Rabinowitz [13] states that a functional

0 e C (H,R), which satisfies the Palais-Smale condition and such that

(4) inf{O(u) :lul -r) )- max{(a(),O(e)) 2-a

where a < r < lei, has necessarily a critical point u. at the level

()c E inf max *(Y(t))
Yer te(a,11

where r = (Y e C ([0.,1J,H) :Y(O) - 0, Y(1) - e} . Clearly c > a, which implies that

U* 0 and u. * e. What happens however if the inequality in (4) is replaced by

equality? In this direction, Pucci-Serrin (14] observed that if there are numbers r

and Ii such that 0 < r < Ri < lei, and

(6) inf{O(u) :r 4 oul 4 R) > max{0(a), f(e)I B a

then c as defined in (5) is a critical value for 4. Moreover if c - a then there is a

critical point at every sphere aB P {u e H : ul -p) for r < p < Ri. See also Willem

[15) for an interesting proof of this fact. Rabinowitz in [3] proved a stronger form of

the dual Mountain Pass Theorem, which provides an improved form of the Pucci-Serrin

result. In his result, Rabinowitz replaces condition (6) by the much weaker condition

inf{4Cu) : ul ri) 4 (0) > 4(e) with let r, and proves that there is a critical

point at the level

b Esup inf t(u)
060 ueau

where 0 -fU C HI I U is open, a e U, e e 6). moreover if b - 0(0) then there is a

critical point at aer . The proposition below is essentially this result, but its proof

differs from the one given in [3].



Proposition 5. Let e e C (R) satisfy the Palais Smale condition. Suppose that

(7) inf{(u) : lul ri max{0(0), f(e))

where 0 ( r < lel. Then * has a critical point u0 * 0.

Proof. It suffices to consider the case where we have equality in (7), since the case of

inequality is the usual Mountain Pass Theorem. (i) First suppose that 4(0) < 0(e). Then

either e is a local minimum (and we are through) or there is an e' near e such that

*(e') < inf{4(u) : uE r. In the latter case we use the usual Mountain Pass Theorem to

conclude. (ii) Next suppose that 4(0) = *(e). As in (I) above either e is a local

minimum or there is e' near e with f(e') < 4(0). (iii) So we may always suppose from

now one that #(0) > f(e). Also we may assume that

4(0) - inf *
B

r

Otherwise we would apply the usual Mountain Pass Theorem to conclude. (iv) No%

0 < p < r. We claim that either there is an a > (0) such that

inf{4(u) : Sul - p) > a or there is a critical point of 0 on 3B . If the firstP

alternative occurs we apply the usual Mountain Pass Theorem and the proof is complete. To

prove the claim, let us suppose that there is no such an a. Then there are u ne Bn p

such that
1

*(u ) ( (0) + -
n n

Consider the ring R - (u e H : 0 ( p - n 4 Sul p + < r) for an appropriate n > 0.

Now use Ekeland variational principle for 4 in the ring. Thus there are vn e R such

that

(8) 4(v) 4 f |n), IV - -
n n n n n

4(v ) 4 0(u) + - lu - v I, v u e R
n n n

For large n, vn is in the interior of R. So take in (8) u vn + tu, where t e R
is small and u is arbitrary with Sul - 1. Using Taylor's formula to expand 4(v + tu)

n

about and letting t + 0 we obtain 14'(v )1 4 -. Finally using the Palais-Smale
n n

condition we conclude that v n u0 e 3B and u0  is a critical point of 0.n 0 p du saciia on f4



3. APPLICATION TO ELLIPTIC PROBLEMS.

Since the abstract results presented in the previous section allow us to treat a

larger class of second order elliptic problems we start anew the abstract setting of the

differential problem. We observe that for the use of variational methods and the existence
I

of H0 -solutions a great deal less of regularity is required from both the nonlinearity g

and the linear part of the equation. We also remark that the basic assumption is the

existence of an ordered pair of a subsolution and a supersolution. So besides the

Ambrosetti-Prodi problem stated in the Introduction we can treat other problems where such

a pair is produced.

Consider the second order elliptic operator

N
Lu = - Dj(aij(x)Diu) + c(x)u

i,J=1

where aij e L(n), c e LN12 () and c(x) ) 0 a.e. Ellipticity here means that there is

r2 1 1
a constant c > 0 such that L a ij(x) i E C . Let a : HO-x H- + R be the bilinear

form associated to L and defined by

a[u.v] = f I aij(x)DiuDjv + c(x)uv

We assume that g : Q x R + R is a Carath~odory function such that

Ig(x,s)l 4 clsl
a + d(x)

where 0 = (N+2)/(N-2) and d e L2N/(N+ 2 ) if N > 3, or e LP  and I < p, 0 < if

N = 2. We then consider the Dirichlet problem

f a(u,vl f g(x,u)v, V e Ho

0 0

I1 

0

Let 0 : HO R be the corresponding Euler-Lagrange functional defined by

(10) f(u) -1 acu,u] - f G(x,u)
S2

1 1/2where G(x,s) = I g(x,&)dE. We renorm H. with the norm Kul = a[u,u] denote the
0

-9-



corresponding inner product by (,> <u,v> - atu,v). Clearly * is C 
1  

and its

derivative at u in given by

<O'u)'> <uv>- f g(x,u)v, Y v eH0

We then see that the critical points of * are precisely the solutions of (9). let us

define the map K : H I H 1 by

<Ku,v> f q(x,u)v, v v e H
0

Theorem 6. Assume conditions on g that guarantee that 0 defined in (10) satisfies the

Palais-~Sale condition. Suppose that there exist a subsolution w e H. and a

supersolution W e H Iof (9) such that w 4 Wi that is,
0

(11)atw,v] 4 f g(x,w)v and a(W,v]) f g(x,w)v, v v e Ho, v ). 0.

Assume also that g(x,s) is a nondecreasing function of s for w(x) 4 a 4 W(x). Then

there exists u0 e H0I such that u0 e [w,wi, c(u )-inf 0 and *'(u )-0
000 1, 0

[C(onsequently u. is a-solution of (9)).

Remarks. 1) We use the notation [w,W] to denote the set of u e H such that
0

w(x) 4 u(x) 4 W(x) for x e si (a.e.).

2) The set of assumptions on g prescribed at the Introduction are eufficient to

guarantee that 0' satisfies the Palais-Smale condition.

Proof. (i) C = (w,W] is a closed and convex subset of H0 (ii) K maps C into C.

Indeed for u e (w,W), we have g(x,w) 4 g(x,u) f g(x,W), which implies

a(w,v) 4 a[Ku,v] 4 a!W,v] for all v 8 Ho, v > 0. By the Maximum Principle (see Gilbarg-

Trudinger (t6, p. 168]) it follows that w 4 Ku 4 W. (iii) * is bounded below in C.

Indeed, if u e tw,wi then Iu(x)I f Iw(x)f + IW(x)I, which implies that

fuI L N(N2 C. So fI G(x,u)I 4 C, which proves the claim. (iv) Finally the

conclusion of the theorem follows readily from Proposition 3. 0

Corollary 7. Same hyptheses of Theorem 6, except the assumption that g is non-decreasing

in s for w(x) , s 4 W(x). Assume however that g is locally lipschitzian and w and

W are continuous in 5. Then the same conclusions of Theorem 6 hold.

Proof. In view of the hypotheses, there is a positive constant K such that the

function gM(x~s) g(x,s) + Ms is nondecreasing in s for w(x) 4 a 4 W(x). The

-10-



Dirichlet problem

a2 u,v] = r qM(x,u)v, v v e H
(12)

u 0

where aMu,v] - a(u,v] + M f uv, has the same solutions as problem (9). Moreover the

functional associated to (12) is the same as 0. And we may apply Theorem 6 to problem

(12). 0

Theorem 8. Assume conditions on g that guarantee that 9 satisfies the Palais-Smale

condition and 0' is of type S+. Suppose that g is locally lipschitzian and the

coefficients of L are such that the results of the LP-regularity theory hold true.

Assume also that w e C 
I'  

is a strict subsolution and W e C 1'a  
is a strict

supersolution. with w 4 W. Then there exists u0 e [w,W] such that §'(u 0 ) 0 0 and

u0 is a local minimum of 0. That is. there exists £ > 0. such that

*(u 0 inf 0
0 (U0

Remark. The Ambrosetti-Prodi problem stated in the Introduction satisfies all the

hypotheses of the above theorem.

Proof. From Theorem 6 it follows that there is u0 e 1w,w] such that G'(u ) - 0 and
0

(13) O(u0) inf 0
0 [w,W)

It can be shown that u0 e C the first step in the proof of this fact uses arguments

from Br~zis-Kato (91 to show that u0 e L
P 

for p > 2N/(N-2), see (6). Then a bootstrap

argument is used. Suppose by contradiction that u0  is not a local minimum. Then for

every £ > 0 there is uC e B C(u ) such that Ou ) < O(u 0). By Proposition 4 there is

v e B (u 0 ) such that

(14) O(v ) inf 0 f(u C) < O(u a and
B C (u 0 )

0 00

(15) *C(v ) 
M 

X (v€ - u0 ), with ) (

-11-



By the same arguments used to establish that u0 e C
'
, we prove that vC e C'. The

strong maximum principle and the fact that w and W are not solutions imply that

v e [w,W] for small C. Then (14) contradicts (13). 0

Corollary 9. In addition to all the hrpotheses of Theorem 8, assume that there is v e H0

such that Ivi > max{IwI,IWl and *(v) ( mn{*(w),*(V)1. Then the Dirichlet problem (9)

has two solutions.

Remark. The existence of such a v is trivial in the case that 0 is not bounded below

I
in H 0 . This is always the case for superlinear problems.

Proof. From Theorem 8 it follows the existence of the first solution, which is a local

minimum of *. The second solution is a consequence of Proposition 5. 0

-12-



REFERENCES

(1) *klnI Non convex minimization problems". Bull. AMS 1 (1979), pp. 443-474.

(21 Hofer, H. -"Variational and Topological methods in Partially Ordered Hilbert

Spaces'. Math. An~n. 261 (1982), pp. 493-5S14.

(3) Rabinowitz, P. - "Some aspects of critical point theory". MRC Tech. Rep. 02465 (Jan.

1983).

14] Dancer, 3. N. - "on the range. of certain weakly nonlinear elliptic partial

differential equations". J. Math. Pures et Appi. 57 (1978), pp. 351-366.

[S) Chang, K. C. - personal communication.

(6) de Figueiredo, D. G. - "on the superlinear Ambrosetti-Prodi problem". MRC Tech. Rep.

02522 (may 1983).

[7] Gidas, B. and Spruck, J. - "A priori bounds for positive solutions of nonlinear

elliptic equations". Comm. PDE 6 (1981), pp. 883-901.

18) Br~xis, H. and Turner, R.E.L. - "On a class of superlineer elliptic problems". Comm.

POE 2 (1977), pp. 601-614.

(91 Brizis, H1. and Kato, T. - "Remarks on the Schr~5dinger operator with singular complex

potentials". J. Math. Pure* et Appl. 58 (1979), pp. 137-151.

(10] Kazdan, J. and Warner, F. W. - "Remarks on some quasilinear elliptic equations".

Comm. Pure Appl. Math. XXVIII (1975), pp. 567-597.

[Ili Amann, H. and Hoes, P. - "A multiplicity result for a class of elliptic boundary

value problems". Proc. Royal Soc. Edinburgh 84A (1979), pp. 145-151.

1121 Berestycki, H. - "Le nombre de solutions de certains problemes semilin~aires

elliptiques". J. Pct. Anal.

[13] Ajsbrosetti, A. and Rabinowitz, P. - "Dual variational methods in critical point

theory and applications". J. Fctl. Anal. 14 (1973), pp. 349-381.

[14] Pucci, P. and Serrin, J. - "A mountain pass theorem". To appear.

(151 Willem, N. - "Lectures tin Critical Point Theory". Trabaiho de Matemfitica n*199.

tniversidade de Brasilia (Feb. 1983).

(161 Gilbarg, D. and Trudinger, N. S. - "Elliptic Partial Differential Equations".

Springer Verlag (1977).

-13-



SECURITY CLASSIFICATION OF THIS PAGE (Wi,. Data gntse.4

REPOT DO AENTTIONPAGEREAD INSTRUCTIONSREPOT DOUMENATIO PAG sxoRu COMPLETING FORM
I. REPOR NUMBER2. GOVT ACCESSION NO. RE79CI1PIEII11T'S CATALOG NUMBER

4. TITLE (and Subtitle) 11. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific
A VARIATIONAL APPRO)ACH TO SUPERLINEAR ELLIPTIC reporting period
PRBLEMS 6. PERFORMING ORG. REPORT NUMBER

T. AUTNOft(.) 8. CONTRACT OR GRANT NUMBER(s)

Djairo G. de Figueiredo and Sergio Solimini DAAG29-8o-C-0041

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Mathematics Research Center, University of AREA & WORK UNIT NUMBERS

610 Walnut Street Wisconsin Work Unit Number 1 -

Madison, Wisconsin 53706 Applied Analysis
It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office September 1983
P.O. Box 12 211 IS. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 13
14. MONITORING AGENCY NMNE & ADDRESS(If diff erent from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
S.a. DECL ASSI FICATION/ DOWNGRADING

SCII EOU LE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of tihe abstract mitered I Block 20, Itdifferent f1rom Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and Identify by block number)

Sexilinear elliptic boundary value problem, Ekeland's variational principle,
Mountain Pass Theorem

20. ABSTRACT (Continue on reverse side It necessay and Identify by block number)

This paper contains a variational treatment of the Ambrosetti-Prodi
problem, including the superlinear case. The main result extends previous
ones by Kazdan-Warner, Amann-Hess, Dancer, K. C. Chang and de Figueiredo. The
required abstract results on critical point theory of functionals in Hilbert
space are all proved using Ekeland's variational principle. These results
apply as well to other superlinear elliptic problems provided an ordered pair
of a sub- and a supersolution is exhibited.

DD I jAN73 1473 EDITION OF I NOV 63 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Mien Data Knere




